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Abstract
We generalize the supersymmetry method in random matrix theory to
ensembles which are unitarily invariant, but otherwise arbitrary. Our
exact approach extends a previous contribution in which we constructed a
supersymmetric representation for the class of norm-dependent random matrix
ensembles. Here, we derive a supersymmetric formulation under very general
circumstances. A reduced probability density and a projector are identified that
map the probability density from ordinary to superspace. Furthermore, it is
demonstrated that setting up the theory in Fourier superspace has considerable
advantages. General and exact expressions for the correlation functions are
given. We also show how the use of hyperbolic symmetry can be circumvented
in the present context in which the nonlinear σ model is not used. We construct
exact supersymmetric integral representations of the correlation functions for
arbitrary positions of the imaginary increments in the Green’s functions.

PACS numbers: 05.45.Mt, 05.30.−d, 02.30.Px

1. Introduction

The supersymmetry method is nowadays indispensable for the discussion of various advanced
topics in the theory of disordered systems [1, 2] and it became equally important in numerous
random matrix approaches to complex systems in general [3–6]. Random matrix theory
(RMT) as originally formulated in ordinary space does not rely on Gaussian probability
densities. It is only important that the random matrix ensembles are invariant under basis
rotations and that they have a certain factorization property. Gaussian probability densities
are highly convenient in calculations, but other probability densities are also possible, and
some of those were already considered in the early days of RMT [7]. On the other hand, the
supersymmetric formulations were constructed for Gaussian probability densities [1, 2, 8] by
means of a Hubbard–Stratonovich transformation. Thus, the question arises naturally whether
the Hubbard–Stratonovich transformation restricts the use of supersymmetry to the Gaussian
form of the probability densities. We address this problem in the present contribution. We
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will show that the supersymmetry method is not at all restricted in this way, and we will
derive supersymmetric formulations of RMT for arbitrary unitarily invariant random matrix
ensembles.

We focus on conceptual and structural issues. In particular, we are not aiming at asymptotic
results in the inverse level number as following from the supersymmetric nonlinear σ model
[1–3]. This latter approach was used in [9] to show universality for infinite level number
in the case of non-Gaussian probability densities. Here, however, our goal is different: we
address the full problem to achieve exact, i.e. non-asymptotic results. In a previous study
[10], we presented supersymmetric representations for norm-dependent ensembles, where the
probability densities are functions of the traced squared random matrices only. Although
a series of interesting insights are revealed already in this case, the derivation can be done
without actually employing deep features of supersymmetry. This is not so in the present
contribution which aims at a general construction. The methods needed are very different
from those of [10]. Here, we have to explore the algebraic structure of superspace.

One can also motivate the present investigation from the viewpoint of applications. We
refer the reader to [10] and the literature quoted therein. Our goal to perform a conceptual
study does not prevent us from giving general expressions for the correlation functions, but
we refrain from looking too much into applications and defer this aspect to future work.

It will not be surprising for those who already have expertise in supersymmetry that a
generalization as outlined above requires an analysis of convergence properties and thus leads
inevitably to the issue of what kind of symmetries the theory in superspace should have.
It was argued in [11] that hyperbolic symmetry, i.e. groups comprising compact and non-
compact degrees of freedom, is necessary if one is to set up a nonlinear σ model in ordinary
space. This line of reasoning carries over to superspace [1, 2], see also the recent review
in [8]. We justify a procedure for how to avoid hyperbolic symmetry in the framework of
our supersymmetric models. The necessity to introduce hyperbolic symmetry is exclusively
rooted in the nonlinear σ model, not in supersymmetry as such. If one aims at exact, i.e.
non-asymptotic results, compact supergroups suffice. For various reasons, including some
related to convergence questions, we find it advantageous to map the theory onto Fourier
superspace.

The paper is organized as follows. Having posed the problem in section 2, we
generalize the Hubbard–Stratonovich transformation in section 3. In section 4, we derive the
supersymmetric formulation in Fourier superspace. The correlation functions are expressed
as eigenvalue integrals in section 5. Summary and conclusions are given in section 6.

2. Posing the problem

In section 2.1, the two relevant kinds of k-point correlation functions are defined and the
relation to the generating functions is given. Thereby we also introduce our notation
and conventions. We clarify what we mean by arbitrary unitarily invariant ensembles in
section 2.2. In section 2.3, we show how different types of correlation functions can be related
to each other by proper Fourier transforms.

2.1. Correlation and generating functions

The random matrix ensemble builds upon N × N Hermitian matrices H, having altogether
N2 independent matrix elements. A normalized probability density P(H) assigns a statistical
weight to the elements of the matrices H. As the Hermitian matrices are diagonalized by
unitary matrices in SU(N), the probability density P(H) is said to define a unitary random
matrix ensemble. No invariance property has been assumed yet. We are interested in the
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k-point correlation functions

Rk(x1, . . . , xk) =
∫

d[H ]P(H)

k∏
p=1

tr δ(xp − H), (1)

depending on the k energies x1, . . . , xk . The δ functions are the imaginary parts of the matrix
Green’s functions, ∓iπδ(xp − H) = Im(xp ± iε − H)−1. Here, iε is an imaginary increment
and the limit ε → 0 is suppressed in the notation. In the supersymmetric construction to
follow, it is convenient to consider the more general correlation functions which also include
the real parts of the Green’s functions. They are, apart from an irrelevant overall sign, given
by

R̂k(x1, . . . , xk) = 1

πk

∫
d[H ]P(H)

k∏
p=1

tr
1N

xp − iLpε − H
. (2)

One often wants to put the imaginary increments on different sides of the real axis. The
quantities Lp which are either +1 or −1 determine the side of the real axis where the imaginary
increment is placed. They define a metric L. The correlation function can always be expressed
as derivatives of a generating function Zk(x + J ) such that

R̂k(x1, . . . , xk) = 1

(2π)k

∂k∏k
p=1 ∂Jp

Zk(x + J )

∣∣∣∣
Jp=0

(3)

where

Zk(x + J ) =
∫

d[H ]P(H)

k∏
p=1

det(H − xp + iLpε − Jp)

det(H − xp + iLpε + Jp)
. (4)

We introduced source variables Jp, p = 1, . . . , k as well as the diagonal matrices x =
diag(x1, x1, . . . , xk, xk) and J = diag(−J1, +J1, . . . ,−Jk, +Jk). In the following, we use the
shorthand notation x±

p = xp − iLpε and x± = diag
(
x±

1 , x±
1 , . . . , x±

k , x±
k

)
. The product of

the differentials of all independent matrix elements is the volume element d[H ]. We use the
notation and the conventions of [12–14]. The normalization Zk(x) = 1 at J = 0 follows
immediately from the definition (4).

We wish to study whether the generating function can be represented as an integral of the
form

Zk(x + J ) =
∫

d[σ ]Q(σ)detg−N(σ − x± − J ), (5)

where σ is a 2k × 2k supermatrix with Hermitian or related symmetries, and where detg
denotes the superdeterminant. If such a representation can be shown to exist, the question
arises whether the probability density Q(σ) in superspace can be obtained in a unique way
from the probability density P(H) in ordinary space.

2.2. Unitarily invariant probability densities

For the important class of norm-dependent ensembles, i.e. ensembles defined by a probability
density depending exclusively on tr H 2, such a unique construction is indeed possible and was
performed in [10]. Here, we tackle the problem of arbitrary unitarily invariant probability
densities P(H). We recall that a probability density must be normalizable and positively semi-
definite. The term ‘arbitrary’ has to be understood as excluding those functions P(H) which
would lead to a divergent integral (4). By ‘unitarily invariant’ we mean that the probability
density has the property

P(H) = P
(
U0HU

†
0

) = P(E), (6)
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where U0 is any fixed matrix in SU(N) and where E = diag(E1, . . . , EN) is the diagonal
matrix of the eigenvalues of H. Although it is obvious, we underline that this includes invariance
under permutations of the vectors defining the basis in which H is written down and also
invariance under permutations of the eigenvalues. Hence, the probability density P(H) should
depend only on matrix invariants, such as tr Hm where m is real and positive. Anticipating the
later discussion, we already now mention that this requirement is a most natural one in view of
the general character of the supersymmetry method. The strength of this method is rooted in
the drastic reduction of degrees of freedom, i.e. of the number of integration variables, when
an integral over the N × N matrix H is identically rewritten as an integral over the 2k × 2k

matrix σ . Thus, supersymmetry removes a certain redundancy. The invariance requirement
implies precisely this redundancy which the supersymmetry method needs. We will show that
this holds for arbitrary unitarily invariant probability densities P(H).

2.3. Mutual relations between the different correlation functions

We wish to address the correlation functions (1) and (2) for finite level number N, we are not
aiming at an asymptotic discussion. If a saddlepoint approximation leading to a nonlinear
σ model as in [1, 3, 11] is the method of choice to study a certain physics problem, one
performs precisely such an asymptotic expansion in 1/N . This is not what we are going
to do in the present contribution. Admittedly, our goal to address the problem exactly for
finite N renders our task mathematically demanding, because we have to solve certain group
integrals. One the other hand, luckily and at first sight paradoxically, this goal allows us to
circumvent the introduction of hyperbolic symmetry, which is a deeply rooted, non-trivial
feature of the nonlinear σ model [1, 3, 8, 11]. Hyperbolic symmetry means that the ensuing
supersymmetric representation of the random matrix model must involve non-compact groups
to make the integrals convergent. This is inevitable if the imaginary increments of the energies
lie on different sides of the real axis. However, if they lie on the same side, no hyperbolic
symmetry occurs and all groups are compact. This facilitates the supersymmetric treatment
tremendously.

We now argue that the correlation functions (1) of the imaginary parts can be recovered
from the more general correlation functions (2) that are suited for the supersymmetric
treatment, even if all imaginary increments lie on the same side of the real axis. We choose
Lp = +1 for all p = 1, . . . , k. Upon Fourier transforming the correlation functions (2), we
obtain the k-point correlations in the domain of the times tp, p = 1, . . . , k,

r̂k(t1, . . . , tk) = 1
√

2π
k

∫ +∞

−∞
dx1 exp(it1x1) · · ·

∫ +∞

−∞
dxk exp(itkxk)R̂k(x1, . . . , xk)

= (i2)k
k∏

p=1

�(tp) exp(−εtp)rk(t1, . . . , tk) (7)

with

rk(t1, . . . , tk) = 1
√

2π
k

∫
d[H ]P(H)

k∏
p=1

tr exp(iHtp). (8)

Importantly, this latter k-point correlation function rk(t1, . . . , tk) in time domain is precisely
the Fourier transform of the correlation function (1). It is well defined on the entire real axes
of all its arguments tp. The inverse transform yields

Rk(x1, . . . , xk) = 1
√

2π
k

∫ +∞

−∞
dt1 exp(−ix1t1) · · ·

∫ +∞

−∞
dtk exp(−ixktk)rk(t1, . . . , tk). (9)
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Based on this observation, we will pursue the following strategy in later Sections of
this contribution: We perform exact manipulations of the correlations R̂k(x1, . . . , xk) with
Lp = +1, p = 1, . . . , k, or of their generating functions, respectively. Having obtained the
appropriate supersymmetric representation, we Fourier transform it into the time domain and
find r̂k(t1, . . . , tk). In this expression, we then identify the supersymmetric representation
of the correlation functions rk(t1, . . . , tk). Upon backtransforming we arrive at the desired
supersymmetric representation for the correlation functions Rk(x1, . . . , xk).

We can even extend the line of arguing. Once we have found the supersymmetric
representation of rk(t1, . . . , tk), we can construct the one of R̂k(x1, . . . , xk) for any arbitrary
choice of the quantities Lp = ±1 by calculating

R̂k(x1, . . . , xk) = 1
√

2π
k

∫ +∞

−∞
dt1 exp(−ix1t1) · · ·

∫ +∞

−∞
dtk exp(−ixktk)

×
k∏

p=1

(iLp 2)�(Lptp) exp(−εLptp)rk(t1, . . . , tk). (10)

In this manner, we will obtain supersymmetric integral representations for all correlation
functions (2) where the imaginary increments lie independently of each other on either side of
the real axes, without introducing hyperbolic symmetry.

3. Generalized Hubbard–Stratonovich transformation

To carry out the programme outlined in section 2, we have to generalize the procedure
referred to as Hubbard–Stratonovich transformation. In section 3.1, we Fourier transform the
probability density. An algebraic duality between matrix structures is uncovered in section 3.2,
and explored further in section 3.3, where spectral decompositions of the matrices involved are
performed. Although our main interest are the correlation functions where all Lp are equal,
we make these latter steps for an arbitrary metric L. We do so, because we find it worthwhile
to document how natural the duality is even for a general metric. Moreover, it allows us to
clearly identify the point where a general metric would require a much involved discussion
of hyperbolic symmetry—which we then avoid by setting Lp = +1 for all p = 1, . . . , k.
In section 3.4, we construct the probability density in superspace. A reduced probability
density is introduced in section 3.5. We derive a generalized transformation formula and the
corresponding generating function in sections 3.6 and 3.7, respectively. In section 3.8, the
norm-dependent ensembles are discussed as a simple example.

3.1. Fourier transform of the probability density

The determinants in the generating function (4) are written as Gaussian integrals, those in
the denominator as integrals over k vectors zp, p = 1, . . . , k with N complex commuting
elements each, and those in the numerator over k vectors ζp, p = 1, . . . , k with N complex
anticommuting elements each. Again omitting irrelevant phase factors, we have

Zk(x + J ) =
∫

d[H ]P(H)

k∏
p=1

∫
d[zp] exp

(
iLpz†p(H − xp + iLpε + Jp)zp

)
×
∫

d[ζp] exp
(
iζ †

p(H − xp + iLpε − Jp)ζp

)
, (11)

where d[zp] and d[ζp] denote the products of the independent differentials. To ensure
convergence of the integrals over the commuting variables, the quantities Lp are inserted
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in front of the bilinear forms in the exponent. This is not needed in the integrals over the
anticommuting variables because they are always convergent. We order the quantities Lp in
the metric tensor L = diag(L1, 1, . . . , Lk, 1). Using the identities

z†pHzp = tr Hzpz†p and ζ †
pHζp = − tr Hζpζ †

p, (12)

the average over H in equation (11) can be written as the Fourier transform

�(K) =
∫

d[H ]P(H) exp(i tr HK) (13)

of the probability density. The Fourier variable is the matrix

K =
k∑

p=1

Lpzpz†p −
k∑

p=1

ζpζ †
p. (14)

The function �(K) is referred to as characteristic function. The definition (13) of the Fourier
transform is the one mostly used in the statistics literature. It guarantees that �(0) = 1,
directly reflecting the normalization of P(H). The definition of the Fourier transform in
section 2.3 follows the ‘symmetric convention’ in which the same factor of 1/

√
2π appears in

the transform and in its inverse.
Up to now, all steps were exactly as in the case of a Gaussian probability density P(H). In

the Gaussian case, one can now do the integral (13) explicitly and one obtains a Gaussian form
for the characteristic function �(K). Here we consider a general unitarily invariant P(H).
Of course, we must assume that the Fourier transform exists, i.e. that P(H) is absolutely
integrable or, even better, that it is a Schwartz function. Absolute integrability is guaranteed
by the fact that P(H) is a probability density, implying that it is positively semi-definite and
normalized. However, we also must assume that the integrals over the vectors zp converge after
doing the Fourier transform. The integrals over the vectors ζp can never cause convergence
problems. In the Gaussian case, all those convergence issues have been carefully discussed
in [11], a recent review is given in [8]. In the general unitarily invariant case, we have no
other choice than to implicitly exclude those probability density P(H) which would cause
convergence problems, assuming that all integrals in the sequel converge. We will come back
to this point later.

It is easy to see that the unitary invariance of P(H) also implies the unitary invariance
of �(K). The matrix K is Hermitian, K† = K . This is so for all choices Lp = ±1 of the
metric elements. As the entries of K are commuting variables, we may conclude that K can
be diagonalized:

K = Ṽ Ỹ Ṽ † such that KṼn = ỸnṼn. (15)

Here Ṽ is in SU(N) and contains the eigenvectors Ṽn as columns, Ṽ = [Ṽ1 · · · ṼN ]. Moreover,
Ỹ = diag(Ỹ1, . . . , ỸN ) is the diagonal matrix containing the eigenvalues Ỹn, n = 1, . . . , N

of K. The unitary invariance of P(H) and the invariance of the measure d[H ] allow one to
absorb Ṽ such that the characteristic function �(K) depends only on Ỹ :

�(K) =
∫

d[H ]P(H) exp(i tr HỸ ) = �(Ỹ ). (16)

In other words, �(K) is a unitarily invariant function too.

3.2. Underlying algebraic duality

The merit of the Hubbard–Stratonovich transformation in the supersymmetry method is the
drastic reduction in the number of degrees of freedom. This is rooted in a duality between
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matrices in ordinary and superspace. We uncover this duality and cast it into a form which
allows a straightforward generalization of the previous discussion for a Gaussian probability
density. We define the N × 2k rectangular matrix

A = [z1 · · · zkζ1 · · · ζk] . (17)

Although it contains commuting and anticommuting entries, A is not a supermatrix of the type
commonly appearing in the framework of the supersymmetry method [1, 2]. Nevertheless,
this matrix will play a crucial role in the following. Its Hermitian conjugate is the 2k × N

rectangular matrix

A† =



z
†
1
...

z
†
k

−ζ
†
1

...

−ζ
†
k


. (18)

The inclusion of the minus signs is necessary to be consistent with the conventions in
[3, 12–14]. It ensures that we have (A†)† = A.

We note that the boson–fermion block notation [3] is used in the definition (17), which
differs from the pq block notation [3] employed when defining the supermatrices L, x and J ,
as well as implicitly σ in section 2. In the boson–fermion block notation, first all commuting
and then all anticommuting variables (or vice versa) are collected in a supervector. Hence,
the supermatrices which linearly transform those vectors consist of rectangular blocks of
commuting or anticommuting variables, in the case of σ the blocks are k × k square. The
pq notation is obtained by simply reordering the basis. One collects the commuting and
anticommuting variables corresponding to each energy index p = 1, . . . , k, such that every
supermatrix is written as a k × k ordinary matrix with 2 × 2 supermatrix elements assigned to
each index pair (p, q). While the latter notation was handy when introducing the generating
function in section 2, it is more convenient for the present discussion to use the boson–fermion
block notation. In particular, the metric then reads L = diag(L1, . . . , Lk, 1, . . . , 1).

The Hermitian N × N matrix K defined in equation (14) can be written as the matrix
product

K = ALA† = (AL1/2)(L1/2A†). (19)

There exists a natural dual matrix to K, found by interchanging the order of the matrices in
equation (19). It is the 2k × 2k matrix

B = (L1/2A†)(AL1/2) = L1/2A†AL1/2, (20)

where

A†A =



z
†
1z1 · · · z

†
1zk z

†
1ζ1 · · · z

†
1ζk

...
...

...
...

z
†
kz1 · · · z

†
kzk z

†
kζ1 · · · z

†
kζk

−ζ
†
1 z1 · · · −ζ

†
1 zk −ζ

†
1 ζ1 · · · −ζ

†
1 ζk

...
...

...
...

−ζ
†
k z1 · · · −ζ

†
k zk −ζ

†
k ζ1 · · · −ζ

†
k ζk


. (21)
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While K = ALA† is an ordinary matrix, A†A and = L1/2A†AL1/2 are supermatrices.
Moreover, K is Hermitian for all choices of the metric L, i.e. for every combination Lp = ±1,
but B is in general not Hermitian because some entries of the metric are imaginary, L

1/2
p = i.

The supermatrix A†A, however, is Hermitian.
Interestingly, the duality between the matrices K and B also implies the equality of

invariants involving the traces according to

tr Km = trg Bm, (22)

for every non-zero, positive integer m. This generalizes the case of a Gaussian probability
density where the need to discuss this equality occurs only for m = 2. As the equality is not
completely trivial due to the presence of anticommuting variables, equation (22) is proven in
appendix A.

3.3. Eigenvalues and eigenvectors of the dual matrices

Our way of formulating the algebraic duality is most helpful for the spectral decomposition in
ordinary and superspace. We write the eigenvalue equation for the matrix K as

KVn = YnVn, (23)

with N eigenvalues Yn and corresponding eigenvectors Vn, n = 1, . . . , N . We will now
construct them in such a manner that they are closely related to, but slightly different from the
eigenvalues Ỹn and eigenvectors Ṽn following from the definition (15). We emphasize that Ṽ

is in the standard SU(N) while our construction of the eigenvectors Vn will not impose this
condition from the beginning. The connection between the two definitions will be clarified in
detail later on. We employ the 2k component supervectors

wn =



wn11

...

wnk1

wn12

...

wnk2


. (24)

There are two distinct representations of these supervectors. In the first one, the elements wnpj

are commuting if j = 1 and anticommuting if j = 2, in the second representation it is the
other way around. We make the ansatz

Vn = AL1/2wn =
k∑

p=1

zpL1/2
p wnp1 +

k∑
p=1

ζpwnp2 (25)

for the eigenvectors. It is convenient to multiply the coefficients wnpj from the right to avoid
some cumbersome signs if wnp2 are anticommuting and appear together with the vectors ζp.
We plug the ansatz (25) into the eigenvalue equation (23) and find

KVn = ALA†AL1/2wn = AL1/2Bwn

YnVn = YnAL1/2wn = AL1/2Ynwn,
(26)

which yields AL1/2(Bwn − Ynwn) = 0. Hence, we conclude that the eigenvalue equation

Bwn = Ynwn (27)
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holds if the eigenvalue equation (23) is valid and if the eigenvectors Vn have the form (25).
There is a duality: the eigenvalues Yn of K to the eigenvectors Vn in the form (25) are also
eigenvalues of B to the eigenvectors wn.

The fact that the eigenvectors wn of the supermatrix B belong to one distinct representation
as discussed below equation (24) implies that there are two types of eigenvalues corresponding
to these representations. We denote the k eigenvalues associated with the first representation
by yp1 = Yp, p = 1, . . . , k and the k eigenvalues associated with the second one by
yp2 = Yk+p, p = 1, . . . , k, respectively. Moreover, not all eigenvectors Vn of K can have
the form (25) if the vector wn is required to be eigenvector of B at the same time. This is so,
because K and B have different dimensions N ×N and 2k×2k, respectively. In all applications
of RMT and supersymmetry, the level number N is large, such that we may safely assume
N > 2k. The matrix B has 2k eigenvalues. Thus, the duality uncovered above only makes a
statement about 2k out of the N eigenvalues of K. Importantly, the remaining eigenvalues of K
are zero, because K is built upon 2k dyadic matrices. Hence, we have

Yn =


yp1 for n = p, p = 1, . . . , k

yp2 for n = p + k, p = 1, . . . , k

0 for n = 2k + 1, . . . , N,

(28)

if N > 2k. As K is an ordinary Hermitian matrix, we know that the eigenvectors Vn to the
zero eigenvalues can be chosen orthogonal with each other and with those to the non-zero
eigenvalues.

The presence of anticommuting variables often implies curious features. Here, it is a sign
switch between the eigenvalues Ỹn and Yn according to the definitions (23) and (15). It occurs
for those eigenvalues which are related to the second representation of the supervectors wn,

Ỹn =
{

+Yn = +yp1 for n = p, p = 1, . . . , k

−Yn = −yp2 for n = p + k, p = 1, . . . , k,
(29)

the other eigenvalues are of course zero as well. Wei [16] observed that such a sign switch is
indeed necessary for consistency reasons. This is, for example, seen from equation (22) for
m = 1.

The line of reasoning given above is supplemented with various details in appendix B,
including a derivation of the relations between the eigenvalues Yn and Ỹn and of the eigenvectors
Vn and Ṽn.

3.4. Probability density in superspace

The characteristic function �(K) of the probability density P(H) is according to
equation (16) unitarily invariant, �(K) = �(Ỹ ). Furthermore, by virtue of the previous
discussion we may view it as function of the eigenvalues of the supermatrix B, such that we
arrive at the chain of equalities

�(K) = �(Ỹ ) = �(y) = �(B). (30)

This crucial observation identifies � as an invariant function in two different spaces, in
ordinary space depending on the N × N matrix K and in superspace, depending on the dual
2k × 2k matrix B. It is interesting to note that, if �(K) is a function of all invariants tr Km

with m = 1, 2, 3, . . ., we may conclude from the equality (22) the identity

�(tr K, tr K2, tr K3, . . .) = �(trg B, trg B2, trg B3, . . .), (31)

implying that the form of �(K) as a function of those invariants fully carries over to superspace.
It is not obvious whether the characteristic function can contain invariants tr Km with non-
integer m, see the discussion in appendix B. We had to assume integer m when deriving the
equality (22) in appendix A. If invariants tr Km with non-integer m can be present, the chain
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of equalities (30) would be more general than equation (31). We note that the determinant
det K is trivially excluded from the relevant invariants, because we know from the previous
section that K has zero eigenvalues if N > 2k. In the following, we will base our derivation
on the chain of equalities (30). However, in the case of ambiguities, we find it always safer to
resort to the slightly less general formula (31).

We restrict the further discussion to the case that all imaginary increments of the energies
lie on the same side of the real axis. Hence we choose the metric

L = +12k. (32)

This choice implies that the supermatrix B becomes Hermitian, B† = B, and the symmetry
group is U(k/k), the unitary supergroup in k bosonic and k fermionic dimensions. For a general
metric, the corresponding relation reads B† = LBL. The symmetry group is pseudounitary,
i.e. the matrices of the defining representation satisfy w†Lw = L. This hyperbolic symmetry
involves non-compact degrees of freedom. The situation was analysed in detail in [11] and [1]
for the nonlinear σ model in ordinary and in superspace, respectively. The proper, convergence
ensuring integration manifolds of the Hubbard–Stratonovich fields, corresponding to the
matrices σ in the present case, was constructed. It seems to us that the Gaussian form
of the probability densities P(H) in these investigations was somehow important for this
construction. Here, however, we study arbitrary unitarily invariant probability densities P(H).
We did not succeed in extending the line of reasoning in [1, 11] to such general P(H), even
though we strongly believe that this should be possible. Nevertheless, this does not cause a
problem in view of what we are aiming at, because we can proceed as outlined in section 2.3.
All issues related to convergence can be dealt with much easier if the choice (32) is made.
That this works fine in the case of a Gaussian P(H) was already demonstrated in [12].

As �(K) is the characteristic function of P(H) in ordinary space, the chain of equalities
(30) naturally suggests to interpret �(B) as a characteristic function in superspace. To this
end, we introduce a probability density Q(σ) depending on a 2k × 2k supermatrix σ whose
Fourier transform is �(B). However, there is a subtle point to which we have to pay attention.
The symmetries of B dictate to a large extent what the symmetries of σ have to be. As B is a
Hermitian supermatrix, σ ought to be a Hermitian supermatrix as well. Nevertheless, a Wick
type of rotation was applied in the case of Gaussian probability densities which provides all
elements in the fermion–fermion block of σ with an imaginary unit i [1, 3]. This modification
is needed to solve a convergence problem too. It makes the expression trg σ 2 positive semi-
definite, and thus the integrals over the Gaussian probability density Q(σ) ∼ exp(−trg σ 2)

convergent. It should be stressed that the Wick type of rotation is, in general, not a unique
procedure. It must implicitly depend on the specific form of the probability density P(H).
As we want to include the Gaussian as a special case in our considerations, we also introduce
the same Wick type of rotation as in [1, 3] in the 2k × 2k supermatrix σ . Other choices might
be necessary in specific applications.

The entries of the matrix B can be modified according to our present Wick type of rotation
by multiplying the vectors ζp containing the anticommuting variables with factors of

√
i, if

one wishes, but we do not do that here. The diagonalization of the matrix σ can be written as

σ = usu† with s = diag(s11, . . . , sk1, is12, . . . , isk2), (33)

where all eigenvalues spj are real. The Wick type of rotation multiplies the eigenvalues sp2

with an imaginary unit. Thus, u is in the unitary supergroup U(k/k), without any modification
of its matrix elements. We also introduce a 2k × 2k supermatrix ρ with the same symmetries
as σ and with the diagonalization

ρ = vrv† with r = diag(r11, . . . , rk1, ir12, . . . , irk2), (34)

where v is in the unitary supergroup U(k/k) as well.



Arbitrary unitarily invariant random matrix ensembles and supersymmetry 13201

To define the probability density Q(σ) in superspace, we first formally replace B with ρ

in the characteristic function,

�(B) −→ �(ρ), (35)

on the level of equation (31), this means

�(trg B, trg B2, trg B3, . . .) −→ �(trg ρ, trg ρ2, trg ρ3, . . .). (36)

This fixes our way of doing the Wick type of rotation. We can then in a well-defined manner
introduce the probability density in superspace through the Fourier integral∫

d[σ ]Q(σ) exp(i trg σρ) = �(ρ), (37)

or, as �(r) is invariant, we have equivalently∫
d[σ ]Q(σ) exp(i trg σr) = �(r). (38)

We recall that the matrix elements of B in the fermion–fermion block are the scalar products
ζ
†
pζq and thus nilpotent variables. This implies that �(B) as a function of these variables

is a finite power series. However, when replacing B with ρ we continue this power series
to an infinite one. It is important to realize that this step is not problematic at all, because
�(B) = �(K) results from the Fourier transform of P(H). To illustrate the feasibility of this
continuation, we refer to the cases covered by equation (31).

When writing the expression trg σρ, one sees that the imaginary units due to the Wick
type of rotation in the fermion–fermion blocks nicely combine to −1 such that the whole
expression trg σρ is real. This is of course necessary to make the Fourier transform well
defined. The inverse of the Fourier transform (37) reads

Q(σ) = 22k(k−1)

∫
d[ρ]�(ρ) exp(−i trg σρ). (39)

We note that the prefactor 22k(k−1) does not involve π , because we have the same number
of commuting and anticommuting variables. Due to the invariance of the measure d[ρ], the
unitary invariance of the characteristic function �(ρ) gives with equation (39) directly the
same property for the probability density, such that

Q(σ) = Q(s). (40)

The unitary invariance of P(H) implies the corresponding feature for Q(σ).
There is a good reason why we defined Q(σ) as above. Nevertheless, what we need now

to carry through our construction, is the integral representation∫
d[σ ]Q(σ) exp(i trg σB) = �(B) (41)

of the characteristic function considered as a function of B. At first sight, there is a problem,
because trg σB is not real anymore. As the imaginary unit is present in the fermion–fermion
block of σ , but absent in that of B, the Fourier integral (41) seems ill defined. However, as
argued above, one can also Wick-rotate the relevant elements of B. Even if one chooses not
to do that, everything is under control, because the matrix elements ζ

†
pζq of B in the fermion–

fermion block are nilpotent. The corresponding expressions in exp(i trg σB) consist of a finite
number of terms, and no convergence problem for the σ integration can occur.
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3.5. Reduced probability density

Employing the results (28) and (29) for the eigenvalues of the matrix K, we have

tr HỸ =
N∑

n=1

HnnỸn =
k∑

p=1

Hppyp1 −
k∑

p=1

H(k+p)(k+p)yp2. (42)

Inserting this into equation (16), using the chain of equalities (30) and carrying out the
replacement (35), we find

�(r) =
∫

d[H ]P(H) exp(i trg hr). (43)

Here, we introduced the diagonal matrix

h = diag(H11, . . . , Hkk, iH(k+1)(k+1), . . . , iH(2k)(2k)), (44)

where the imaginary units are inserted for convenience. One concludes that only a reduced
probability density enters the further consideration which depends exclusively on the 2k

diagonal elements h of H appearing in equation (42). While this is indeed correct, a naive
definition of the type P (red)(h) = ∫

d[H/h]P(H) for the reduced probability density turns
out to be problematic. It would not preserve any information about supersymmetry, although
we know that this structure is essential. The proper way of defining P (red)(h) is by explicitly
using the characteristic function which, as shown in detail, contains all the information about
supersymmetry. The above-mentioned naive definition serves as a guideline to obtain from
equation (43) the meaningful expression

�(r) =
∫

d[h]P (red)(h) exp(i trg hr), (45)

which implicitly defines the reduced probability density as the Fourier transform of the
characteristic function �(r) in the space of the 2k coordinates h. Thus, upon backtransforming,
we arrive at

P (red)(h) = 1

(2π)2k

∫
d[r] exp(−i trg hr)�(r). (46)

The coordinates h and r are here viewed as describing a flat space. This is very different from
Fourier transforms in curved space, where the eigenvalues r function in a direct sense as the
radial coordinates of a Hermitian supermatrix ρ. A proper definition of the diagonal matrix
h made it possible to employ the supertrace in equations (45) and (46). The necessity to be
so careful when defining the reduced probability density P (red)(h) will be illustrated by an
example later on. Unfortunately, it is inevitable to include material to be derived in the ensuing
sections when assembling this example. We are thus forced to postpone its discussion, it will
be presented in appendix F.

In all these considerations above, we have not used equation (31). If only invariants
of the form trg ρm = trg rm with integer m enter the characteristic function, the defining
expression (46) implies that the reduced probability density P (red)(h) is as well only a
function of the corresponding quantities trg hm. This is easily seen by permuting any pair
of the diagonal elements either within H11, . . . , Hkk or within H(k+1)(k+1), . . . , H(2k)(2k) in
P (red)(h). By exchanging the integration variables in r11, . . . , rk1 or r12, . . . , rk2 accordingly,
all such permutations can be absorbed again. Importantly, permutations mixing the groups
H11, . . . , Hkk and H(k+1)(k+1), . . . , H(2k)(2k) cannot be redone in general. This is so because
of the imaginary units. There are only some exceptional cases, for example if �(r) is only
a function of trg r2. The exclusive dependence of P (red)(h) on the quantities tr g hm is an
invariance property of a rather unusual form, because the entries of h are not eigenvalues.
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3.6. Generalized transformation formula

We plug the characteristic function as given by equation (45) into the inverse Fourier transform
(39) and find

Q(σ) = 22k(k−1)

∫
d[ρ] exp(−i trg σρ)

∫
d[h]P (red)(h) exp(i trg hr). (47)

Assuming that the order of integrations may be interchanged, we arrive at the generalized
transformation formula

Q(σ) =
∫

d[h]P (red)(h)χ(σ, h). (48)

The function

χ(σ, h) = 22k(k−1)

∫
d[ρ] exp(i trg(hr − σρ)) (49)

is a projector which is related to, but different from a δ function. It might look surprising
that the integrand contains the full matrix ρ as well as its eigenvalue matrix r, but recalling
the derivation, this is rather natural. The term exp(i trg hr) stems from the Fourier transform
of the probability density P(H) in ordinary space. Although it is conveniently written in
a supersymmetric notation, it is exclusively rooted in ordinary space. Thus, anticommuting
variables may only implicitly be present, which makes it plausible that r appears, but not the
full ρ.

The projector satisfies the important normalization property∫
d[σ ]χ(σ, h) =

∫
d[ρ]δ(4k2)(ρ) exp(i trg hr) = 1, (50)

where δ(4k2)(ρ) is the product of the δ functions of all 4k2 independent matrix elements in the
supermatrix ρ. This then gives directly the normalization∫

d[σ ]Q(σ) =
∫

d[h]P (red)(h)

∫
d[σ ]χ(σ, h) =

∫
d[h]P (red)(h) = 1 (51)

of the probability density in superspace. As one should expect, the normalization of P(H),
which implies the normalization of P (red)(h), yields the normalization of Q(σ). One is tempted
to conclude that this feature wraps up the whole convergence discussion if the choice (32) has
been made. Such an interpretation is corroborated by the character of the projector χ(σ, h).
As it shares features with a δ function, it certainly improves the convergence properties when
appearing in an integral. Nevertheless, this optimism regarding the convergence properties
comes to terms when considering the complexity of all intermediate steps. Unfortunately, it
prevents us at present from providing the impression stated above with more mathematical
substance for a general P(H). One possible problem is related to the Wick type of rotation. All
invariants tr H 2m = tr E2m are positive semi-definite for all integer m. This is clearly not so for
the corresponding invariants trg σ 2m = trg s2m, where we have positive semi-definiteness only
for odd integers m. This does not inevitably lead to difficulties, because a term exp(−tr H 2m)

in P(H) is not necessarily mapped onto its analogue exp(−trg σ 2m) in Q(σ), but it illustrates,
first, at which points problems could arise and, second, the need to adjust the Wick type of
rotation to the specific case under consideration. Nevertheless, anticipating the discussion to
follow in sections 4 and 5, we mention already now that the whole problem can be considered
exclusively in Fourier superspace such that only the convergence properties of the characteristic
function matter.
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3.7. Generating function

Having obtained the probability density Q(σ), we use equations (30) and (41) in formula (11).
The remaining steps to be done are then exactly as in [12], and we arrive at the result

Zk(x + J ) =
∫

d[σ ]Q(σ)detg−N(σ − x−J ), (52)

where

Q(σ) =
∫

d[h]P (red)(h)χ(σ, h) (53)

is the probability density in superspace. Although the general transformation formula (53)
clearly is of conceptual interest, the reader might wonder what its practical value is. As the
naive definition P (red)(h) = ∫

d[H/h]P(H) does not yield the correct reduced probability
density, a direct computation of the latter from the probability density P(H) does not seem
to be possible at the moment, and any calculation must involve the characteristic function.
Nevertheless, as the example in appendix F shows, the naive definition yields a result which
is not so far off, it differs from the right one by signs and imaginary units. Hence, there might
be a way to render the naive definition correct. It is, however, much more important that, first,
the correlations can be nicely expressed in terms of the reduced probability density P (red)(h)

and that, second, the entire approach can be fully carried through in Fourier superspace such
that everything relies exclusively on the characteristic function. These insights will be given
in sections 4 and 5.

3.8. Norm-dependent ensembles revisited

The transformation formula (53) generalizes a transformation formula which we obtained
for norm-dependent random matrix ensembles [10]. We revisit this case to acquire some
experience with the generalized transformation formula. The probability density P(H) of a
norm-dependent ensemble depends on H only via tr H 2. In [15], the class of these ensembles
was constructed by averaging Gaussian probability densities over the variance t:

P(H) =
∫ ∞

0
f (t)

1

2N/2(πt)N
2/2

exp

(
− 1

2t
tr H 2

)
dt, (54)

where the choice of the spread function f (t) determines the ensemble. As we obviously have

P (red)(h) =
∫ ∞

0
f (t)

1

(2πt)k/2
exp

(
− 1

2t
trg h2

)
dt, (55)

we find with the transformation formula (53)

Q(σ) = 22k(k−1)

∫ ∞

0
dt f (t)

∫
d[ρ] exp(−i trg σρ)

×
∫

d[h]
1

(2πt)k/2
exp

(
− 1

2t
trg h2

)
exp(i trg hr)

= 2k(k−1)

∫ ∞

0
dt f (t)

∫
d[ρ] exp(−i trg σρ)2k(k−1) exp

(
− t

2
trg r2

)
=
∫ ∞

0
dt f (t)2k(k−1) exp

(
− 1

2t
trg σ 2

)
(56)

which is indeed the correct result. We mention in passing that it allows one to express the
mapping of norm-dependent ensembles from ordinary to superspace as one single integral
in terms of the probability density alone [10], i.e. without explicit appearance of the spread
function.



Arbitrary unitarily invariant random matrix ensembles and supersymmetry 13205

4. Formulation in Fourier superspace

Another supersymmetric formulation of the generating function will prove most helpful for
calculations of the correlation functions later on. Also from a conceptual viewpoint, it has
some rather appealing features. In section 4.1, we construct the new formulation by exploiting
a convolution theorem, and in section 4.2 we give a direct derivation.

4.1. Applying a convolution theorem

According to equation (52), Zk(x +J ) is a convolution in supermatrix space. For three 2k×2k

Hermitian supermatrices σ, ρ, τ and for two well-behaved functions g1(σ ), g2(σ ) as well as
their Fourier transforms G1(ρ),G2(ρ), one easily derives the convolution theorem∫

d[σ ]g1(σ )g2(τ − σ) = 22k(k−1)

∫
d[ρ] exp(−i trg τρ)G1(ρ)G2(ρ). (57)

In the present case, we have τ = x + J . We already know the Fourier transform of Q(σ), it is
just the characteristic function �(ρ). The Fourier transform

I (ρ) =
∫

d[σ ] exp(i trg ρσ) detg−Nσ−, (58)

of the superdeterminant is needed. It can be viewed as a supersymmetric generalization of the
Ingham–Siegel integral, whose ordinary version has recently been used in the framework of
supersymmetric methods [17]. Obviously, I (ρ) only depends on the eigenvalues r of ρ. In
appendix C, we show that it is given by

I (ρ) = cNk

k∏
p=1

�(rp1)(irp1)
N exp(−εrp1)

∂N−1δ(rp2)

∂rN−1
p2

cNk = 1

2k(k−1)

(
i2π(−1)N−1

(N − 1)!

)k

.

(59)

We note that I (ρ) is almost equal to detg+Nρ, apart from the restriction to negative eigenvalues
rp1 and the occurrence of the functions δ(rp2) instead of 1

/
r±
p2. Loosely speaking, the Fourier

transform maps the superdeterminant raised to the power −N onto the superdeterminant raised
to the power +N . We find from equations (52) and (57)

Zk(x + J ) = 22k(k−1)

∫
d[ρ] exp(−i trg(x + J )ρ)�(ρ)I (ρ). (60)

Thus we arrive at the remarkable insight that only the characteristic function �(K) is needed
in the generating function and, thus, for the calculation of the correlation functions. It is
certainly interesting that the probability density in superspace Q(σ) follows in a unique way
from the one in ordinary space P(H), but the use of Q(σ) can be avoided if the Fourier
superspace representation is more convenient in a particular application.

4.2. Direct derivation

Since Q(σ) does not appear anymore in the expression (60), the question arises if one can
obtain this result without going through the construction of the probability density. This is
indeed possible. We go back to equation (11) and do the average over the ensemble:

Zk(x + J ) =
k∏

p=1

∫
d[zp] exp

(
iLpz†p(iLpε − xp + Jp)zp

)
×
∫

d[ζp] exp
(
iζ †

p(iLpε − xp − Jp)ζp

)
�(K). (61)
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We now use the insights of section 3.4 and insert an integral over a δ function,

�(K) = �(B) =
∫

d[ρ]�(ρ)δ(4k2)(ρ − B)

= 22k(k−1)

∫
d[ρ]�(ρ)

∫
d[σ ] exp(−i trg σ(ρ − B)), (62)

where ρ and σ are 2k × 2k Hermitian supermatrices, to which the Wick type of rotation has
been applied in the fermion–fermion blocks. Again, one might argue that this makes the
expressions in equation (62) ill defined, because these matrices and the matrix B are treated
on equal footing, although no Wick type of rotation has been applied to the latter. The same
reasoning as in section 3.4 can be employed: either one also Wick-rotates B or one argues that
the integrals in equation (62) are well defined because the elements of B in the fermion–fermion
block are in any case nilpotent. We plug equation (62) into equation (61). The integrals over
the vectors zp and ζp can then be done in the usual way, and we have

Zk(x + J ) = 22k(k−1)

∫
d[ρ]�(ρ)

∫
d[σ ] exp(−i trg σρ)detg−N(σ − x−J )

= 22k(k−1)

∫
d[ρ]�(ρ) exp(−i trg(x + J )ρ)

∫
d[σ ] exp(−i trg σρ)detg−Nσ +,

(63)

where we shifted σ by x + J in the last step. The remaining σ integral is, after
changing variables from σ to −σ , precisely of the Ingham–Siegel type (58) and we obtain
equation (60).

Of course, the probability density Q(σ) is somewhat hidden in equation (62). However, to
actually obtain it, one has to do the ρ integral, which would require an interchange with the σ

integration. Avoiding the introduction of the probability density Q(σ) in the derivation sheds
new light on the convergence issues. If P(H) is a Schwartz function, �(K) is a Schwartz
function as well and the convergence discussion can be exclusively restricted to the Fourier
superspace and to the properties of the characteristic function when passing from ordinary
space, i.e. from �(K), to superspace, i.e. to �(B) and �(ρ).

5. Correlation functions in terms of eigenvalue integrals

In section 5.1, we briefly review the integrals that we need over the unitary group in ordinary
and in superspace. We derive a first general result by identifying fundamental correlations
in section 5.2. In section 5.3, we carry out the procedure outlined in section 2.3 and obtain
supersymmetric integral representations of the correlation functions for arbitrary positions of
the imaginary increments. Another general result is given in section 5.4, exclusively in terms
of eigenvalue integrals. In section 5.5, we discuss a probability density involving higher order
traces as an example.

5.1. Eigenvalue-angle coordinates and group integrals

The Hermitian random matrix is diagonalized according to H = UEU † with E =
diag(E1, . . . , EN) and with U being in SU(N). The volume element in these coordinates
reads

d[H ] = πN(N−1)/2

N !
∏N−1

n=1 n!
�2

N(E) d[E] dµ(U), (64)
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where we introduced the Vandermonde determinant

�N(E) = det
[
Em−1

n

]
n,m=1,...,N

=
∏
n<m

(En − Em). (65)

The invariant measure dµ(U) in equation (64) is normalized to unity. We will make use of
the Harish-Chandra–Itzykson–Zuber integral [18, 19]∫

dµ(U) exp(i tr UEU †R) =
∏N−1

n=1 n!

iN(N−1)/2

det[exp(iEnRm)]n,m=1,...,N

�N(E)�N(R)
, (66)

where R = diag(R1, . . . , RN) is also a diagonal matrix. In particular, we will employ this
result for the case that Rn = 0 for n > 2k. This can be obtained in various ways, as for
example in [20],∫

dµ(U) exp(i tr UEU †R) =
N−1∏

n=N−2k+1

n!

in

×
det

[
exp(iEnR1) · · · exp(iEnR2k)1En · · ·EN−2k−1

n

]
n=1,...,N

�N(E)�2k(R̃)
∏2k

n=1 RN−2k
n

, (67)

where we write R̃ = diag(R1, . . . , R2k).
In superspace, the diagonalizations of the Hermitian supermatrices σ = usu† and

ρ = vrv† have already been introduced in equations (33) and (34). The volume element
d[ρ] reads in eigenvalue-angle coordinates [12]

d[ρ] = B2
k (r) d[r] dµ(v), (68)

where the function

Bk(r) = �k(r1)�k(ir2)∏
p<q(rp1 − irq2)

= det

[
1

rp1 − irq2

]
p,q=1,...,k

(69)

is the superspace equivalent of the Vandermonde determinant. The supersymmetric analogue
[12, 21] of the Harish-Chandra–Itzykson–Zuber integral is given by∫

dµ(v) exp(i trg vrv†s) = ik

2k2
πk

det[exp(irp1sq1)]p,q=1,...,k det[exp(irp2sq2)]p,q=1,...,k

Bk(r)Bk(s)
.

(70)

As in [13, 14], the normalization of the invariant measure dµ(v) is chosen such that formula
(70), when applied to a shifted Gaussian distribution, yields the proper δ function in the curved
space of the eigenvalues for vanishing variance.

5.2. General result as an average over the fundamental correlations

The supergroup integral (70) can now directly be applied to the Fourier superspace formulation
(60), because both the functions �(ρ) and I (ρ) depend only on the eigenvalues r. This is the
merit compared to the original superspace formulation (52), to which the result (70) cannot
be applied in general. In the case of a Gaussian probability density, a shift of the integration
matrix σ by x + J gives a form suited for the application of the supergroup integral [12–14].
In the general case, however, this is not possible and equation (60) is much more convenient.
We find

Zk(x + J ) = 1 +
2k(k−1)

Bk(x + J )

( i

2π

)k
∫

d[r]Bk(r) exp(−i trg(x + J )r)�(r)I (r). (71)

Two remarks are in order. The first term, i.e. unity, stems from a certain boundary contribution
which only appears in superspace. In physics, it is often referred to as Efetov–Wegner–Parisi–
Sourlas term [1, 22–24], while it goes by the name Rothstein contribution [25] in mathematics.
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In the present case, it yields the normalization Zk(x) = 1 of the generating function, because
one easily sees that 1/Bk(x + J ) vanishes at J = 0. Formally, the boundary contribution
is obtained by putting ρ = 0 in the integral (60), by using �(0) = 1 and I (0) = 1/2k(k−1)

according to equation (59) and to appendix C, and by finally dividing the result with the factor
2k(k−1) which is due to our definition of the volume element d[ρ]. There are various methods
to explicitly justify this procedure in the case k = 1. In [26], for example, it is directly
constructed from Rothstein’s theorem. However, there is a problem, because none of those
explicit methods could be extended so far to our eigenvalue-angle coordinates for k > 1. We
can thus not exclude that further boundary contributions exist. Nevertheless, as to be discussed
below, we are confident that they are not important for our purposes.

The second remark concerns the determinants in the formula (70) which are not present in
equation (71). As the functions �(r) and I (r) are invariant under permutations of the variables
rp1 as well as of the variables rp2, it suffices to keep only one term of each determinant, because
all others yield the same under the integral.

We can now proceed in different ways. Here, we begin with inserting the characteristic
function in the form (45) as given in section 3.6. Upon interchanging the r and the h integral
we find the expression

Zk(x + J ) = 1 +
(−π)k

Bk(x + J )

∫
d[h]P (red)(h)R̂

(fund)
k (x + J − h), (72)

where we introduced the fundamental correlation function

R̂
(fund)
k (s) = 2k(k−1)

∫
d[r]Bk(r) exp(−i trg sr)I (r) (73)

as a new object. In equation (72), we have to set s = x + J − h. We refer to the correlation
function (73) as fundamental, for it gives all structural information about the correlations
before averaging over the reduced probability density P (red)(h). The fundamental correlation
function is the Fourier transform of the function I (r) in the curved eigenvalue space. It is
closely related to the backtransform of I (ρ), i.e. to the superdeterminant detg−Nσ−, but it is
not quite the same. We discuss that in appendix D.

The result (72) is not a trivial reformulation of equation (4) defining the generating
function. While it is obvious from equation (4) that only the N eigenvalues of H are relevant
for the ensemble average, equation (72) makes a different statement, namely that only 2k

diagonal elements of H enter the computation of the average. Using the determinant structure
(69) of Bk(r) and formula (59), we find that the fundamental correlation function has the
determinant structure

R̂
(fund)
k (s) = det[Ĉ(fund)(sp1, isq2)]p,q=1,...,k, (74)

where the fundamental kernel is given by

Ĉ(fund)(sp1, isq2) = − (−1)N−1

π(N − 1)!

∫ +∞

−∞

∫ +∞

−∞

dr1 dr2

r1 − ir2

× exp
(−i

(
r1s

+
p1 + r2sq2

))
�(r1)(ir1)

N ∂N−1δ(r2)

∂rN−1
2

. (75)

We suppress the indices p and q in the integration variables r1 and r2. It is shown in
appendix D that the fundamental kernel can be written as

Ĉ(fund)(sp1, isq2) = − 1

π

N−1∑
n=0

(isq2)
n

n!

∫ ∞

0
dr1(ir1)

n exp(−ir1s
−
p1)

= 1

π

N−1∑
n=0

(isq2)
n

(s−
p1)

n+1
. (76)



Arbitrary unitarily invariant random matrix ensembles and supersymmetry 13209

As this is a finite geometric series, we may also write

Ĉ(fund)(sp1, isq2) = 1

πs−
p1

1 − (isq2/s
−
p1)

N

1 − (isq2/s
−
p1)

= 1

π(s−
p1)

N

(s−
p1)

N − (isq2)
N

s−
p1 − isq2

. (77)

The fact that the fundamental kernel has a representation as a finite series and as a ratio of
differences is reminiscent of and related to the Christoffel–Darboux formula [27] in the theory
of orthogonal polynomials.

The correlation functions according to equation (3) are then quickly obtained using the
steps of [12]. We find

R̂k(x1, . . . , xk) =
∫

d[h]P (red)(h)R̂
(fund)
k (x − h) =

∫
d[h]P (red)(h)

× det[Ĉ(fund)(xp − Hpp, xq − iH(k+q)(k+q))]p,q=1,...,k. (78)

The correlation functions are convolutions of the fundamental correlations with the reduced
probability density P (red)(h). In the original problem, N2 integrals over the variables in H have
to be done. This is also the number of integrals to be done when calculating the characteristic
function. Hence, depending on the complexity of P(H) under consideration, it can be hard
or even impossible to obtain P (red)(h) explicitly. Nevertheless, the result (78) yields a deep
structural insight. It holds for arbitrary unitarily invariant random matrix ensembles.

It is somewhat surprising that the reduced probability density P (red)(h) suffices to write
down equation (78). One might conclude that this obliterates the above convergence discussion
related to the functional forms of the probability densities in ordinary and superspace and of
the characteristic function. Formula (78) indeed gives reason to be optimistic. However, we
recall that the characteristic function was used in the derivation, even though it does not appear
any more explicitly. Moreover, we assume that the h and the r integrations can be interchanged
when going from equation (43) to equation (72).

The inherent determinant structure (74) of the fundamental correlations will be destroyed
in general when averaging over the random matrix ensemble. It will be preserved if the
reduced probability density factorizes according to

P (red)(h) =
k∏

p=1

P
(red)
1 (Hpp)P

(red)
2 (H(k+p)(k+p)). (79)

However, this is not the only situation in which the determinant structure survives. The Mehta–
Mahoux theorem [7] implies that the correlation functions Rk(x1, . . . , xk) can be written as
determinants for all unitarily invariant probability densities which factorize in their eigenvalue
dependence,

P(H) = P(E) =
N∏

n=1

P (ev)(En). (80)

One would not expect that the factorizations (79) or (80) are completely independent, but
we have not looked into this further. In the present context, it is more important that
the applicability of the Mehta–Mahoux theorem is limited to precisely the case when the
factorization (80) holds. It is thus a quite attractive feature of the result (78) that it is valid
for all unitarily invariant probability densities which have the property P(H) = P(E), but
which do not need to have any factorization property as in equation (79) or (80). In this
sense, formula (78) is more general than the Mehta–Mahoux theorem. In section 5.4 we
will give another result, also valid for all unitarily invariant probability densities. Since it is
formulated in terms of integrals over the eigenvalues, its structure is somewhat different from
formula (78).
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As an easy check of our findings, we show in appendix E that equation (78) yields
immediately the GUE correlation functions. This is important, because it strengthens our
confidence that we treated the Efetov–Wegner–Parisi–Sourlas term [1, 22–24] consistently.

5.3. Correlations functions of the imaginary parts and for arbitrary positions of the
imaginary increments

As discussed in section 2.1, the correlation functions Rk(x1, . . . , xk) as defined in
equation (1) are the main object of our interest. We now construct integral representations
for them and, in addition, also for all correlation functions R̂k(x1, . . . , xk) as defined in
equation (2) for arbitrary positions of the imaginary increments. To avoid introduction of
hyperbolic symmetry, we restricted ourselves from section 3.4 on to the case that all imaginary
increments lie on the same side of the real axis. However, applying the strategy outlined in
section 2.3, we can recover every correlation function that we want.

It is convenient to use the general result (78), allowing us to conduct the construction by
only looking at the fundamental correlation function R̂

(fund)
k (x − h). Due to its determinant

structure, it depends on one fixed energy xp either in the form Ĉ(fund)(xp − Hpp, xp −
iH(k+p)(k+p)) or in the form Ĉ(fund)(xq − Hqq, xp − iH(k+p)(k+p))Ĉ

(fund)(xp − Hpp, xq ′ −
iH(k+q ′)(k+q ′)) where q �= p and q ′ �= p. From the first of expressions (76) we conclude
that in both cases the dependence of R̂

(fund)
k (x − h) on the fixed energy xp is a finite sum of

the terms

̂nm(xp) = (xp − iH(k+p)(k+p))
m

∫ ∞

0
dr1(ir1)

n exp(−ir1(x
−
p Hpp)), (81)

where n = m is possible. As the average over the ensemble is linear, it suffices to investigate
the functions ̂nm(xp) in order to study the energy dependence of the correlation functions
R̂k(x1, . . . , xk). According to section 2.3, we study the Fourier transform

λ̂nm(tp) = 1√
2π

∫ +∞

−∞
dxp exp

(
itpxp

)
̂nm(xp). (82)

Shifting xp by Hpp, it can be cast into the form

λ̂nm(tp) = 1√
2π

exp(itpHpp)

∫ +∞

−∞
dxp exp(itpxp)

× (xp + Hpp − iH(k+p)(k+p))
m

∫ ∞

0
dr1(ir1)

n exp(−ir1x
−
p )

= 1√
2π

exp(itpHpp)

(
Hpp − iH(k+p)(k+p) − i

∂

∂tp

)m

×
∫ ∞

0
dr1(ir1)

n exp(−εr1)

∫ +∞

−∞
dxp exp(ixp(tp − r1))

=
√

2π exp(itpHpp)

(
Hpp − iH(k+p)(k+p) − i

∂

∂tp

)m

×
∫ ∞

0
dr1(ir1)

n exp(−εr1)δ(tp − r1). (83)

As the r1 integration extends over the positive real axis only, the integral is zero whenever
tp < 0. All derivatives are zero as well in this case, implying that the whole expression is
proportional to �(tp) . For tp > 0, the integral yields (itp)n exp(−εtp). All derivatives of the
exponential function give terms containing powers of ε and thus vanish in the limit ε → 0.
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Here, we may assume that the tp integral cannot yield bare singularities in ε. We can thus
neglect all these terms and write exp(−εtp) in front of the entire expression. We find

λ̂nm(tp) = i2�(tp) exp(−εtp)λnm(tp), (84)

where

λnm(tp) =
√

2π

i2
exp(itpHpp)

(
Hpp − iH(k+p)(k+p) − i

∂

∂tp

)m

(itp)n. (85)

Indeed, equation (84) directly implies equation (7) and we can read off the desired integral
representations. The function λnm(tp) is recognized as Fourier transform of

nm(xp) = −i(xp − iH(k+p)(k+p))
m

∫ +∞

−∞
dr1(ir1)

n exp(−ir1(xp − Hpp)),

= −i(−1)n2π(xp − iH(k+p)(k+p))
m ∂n

∂xn
p

δ(xp − Hpp)

= −2n!(xp − iH(k+p)(k+p))
m Im

1

(x−
p − Hpp)n+1

. (86)

Collecting everything, we arrive at

Rk(x1, . . . , xk) =
∫

d[h]P (red)(h)R
(fund)
k (x − h) (87)

with the fundamental correlation function

R
(fund)
k (s) = det[C(fund)(sp1, isq2)]p,q=1,...,k (88)

and the fundamental kernel

C(fund)(sp1, isq2) = − 1

2π

N−1∑
n=0

(isq2)
n

n!

∫ +∞

−∞
dr1(ir1)

n exp(−ir1sp1)

= 1

π

N−1∑
n=0

(isq2)
n Im

1

(s−
p1)

n+1
. (89)

Hence one simply has to replace the singularities 1/(s−
p1)

n+1 everywhere with their imaginary
parts. Tracing back these considerations, we realize that all necessary modifications reside in
the rp1 integrals and specifically in the function I (r). Replacing equation (59) with

I (ρ) = 1

2k(k−1)

(
π(−1)N−1

(N − 1)!

)k k∏
p=1

(irp1)
N ∂N−1δ(rp2)

∂rN−1
p2

(90)

is equivalent to the above-discussed steps made to obtain Rk(x1, . . . , xk).
With the help of formula (10), it is now an easy exercise to construct integral

representations for the correlation functions R̂k(x1, . . . , xk) defined in equation (2) with
arbitrary positions of the imaginary increments. Formulae (74) and (78) remain valid if
the fundamental kernel is replaced with

Ĉ(fund)(sp1, isq2) = ∓ 1

π

N−1∑
n=0

(isq2)
n

n!

∫ ∞

0
dr1(ir1)

n exp
(∓ ir1s

∓
p1

)
= 1

π

N−1∑
n=0

(isq2)
n(

s∓
p1

)n+1 = 1

π
(
s∓
p1

)N
(
s∓
p1

)N − (isq2)
N

s∓
p1 − isq2

, (91)
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where the notation s∓
p1 indicates that the imaginary increment is chosen according to

x±
p = xp − iLpε. In terms of the function I (r), this is equivalent to replacing

equation (59) with

I (ρ) = cNk

k∏
p=1

�(Lprp1)(irp1)
N exp(−Lpεrp1)

∂N−1δ(rp2)

∂rN−1
p2

. (92)

Thus, we obtain supersymmetric integral representations for all these correlation functions
without using hyperbolic symmetry.

The insights just presented may be viewed as a more formal justification of the procedure
denoted by the operator symbol � in [12–14]. We argued in these studies that the generating
functions satisfy a diffusion process. The diffusion propagator contains no information about
the positions of the imaginary increments, this is exclusively contained in the initial condition
of the diffusion. Moreover, the diffusion propagator is nothing but the supersymmetric
Harish-Chandra–Itzykson–Zuber integral (70) over the unitary supergroup, not involving any
non-compact degrees of freedom. This can be verified in an elementary way by simply
plugging it into the diffusion equation. Hence, one is free to adjust the positions of the
imaginary increments as needed, which essentially defined the operator �. We have now given
another justification. Nevertheless, it remains an interesting mathematical question to also
derive exact, non-asymptotic supersymmetric integral representations for arbitrary choices of
the metric L from group integrals involving non-compact degrees of freedom.

5.4. General result in terms of eigenvalue integrals

A further integral representation follows from equation (71). We take the derivatives with
respect to the source variables as in [12] and in section 5.2 and find

R̂k(x1, . . . , xk) = 2k(k−1)

∫
d[r]Bk(r) exp(−i trg xr)�(r)I (r). (93)

The correlation functions Rk(x1, . . . , xk) as well as those for arbitrary positions of the
imaginary increments are obtained as in section 5.3, we simply have to replace I (r) according
to equation (59) by I (r) according to equation (90) or (92), respectively. We expand the
determinant Bk(r) by introducing the permutations ω of the indices p = 1, . . . , k and write

R̂k(x1, . . . , xk) = 2k(k−1)cNk

∑
ω

(−1)j (ω)

∫
d[r]�(r)

k∏
p=1

exp(−ixprp1 − xω(p)rω(p)2)

rp1 − irω(p)2

×�(Lprp1)(irp1)
N exp(−Lpεrp1)

∂N−1δ(rω(p)2)

∂rN−1
ω(p)2

, (94)

where j (ω) is the parity of the permutation ω. The δ functions allow us to do the k integrals
over the variables rp2 immediately. We integrate by parts and use Leibnitz’ rule to work out
the derivatives of products:

R̂k(x1, . . . , xk) = (i2π)k
∑

ω

(−1)j (ω)

N−1∑
n1=0

1

n1!

∫ +∞

−∞
dr11�(L1r11) exp(−ix1r11 − L1εr11)

× (−ir11)
n1 · · ·

N−1∑
nk=0

1

nk!

∫ +∞

−∞
drk1�(Lkrk1) exp(−ixkrk1 − Lkεrk1)(−irk1)

nk

× ∂
∑k

p=1 np exp
(−∑k

p=1 xω(p)rp2
)
�(r)∏k

p=1 ∂r
np

p2

∣∣∣∣
r2=0

. (95)
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This result is valid for an arbitrary unitarily invariant probability density. The structure of this
expression is quite different from the one in section 5.2, where the correlation functions were
found to be a convolution of the reduced probability density with the fundamental correlations.

It is instructive to see how the correlation functions can acquire a determinant structure.
An obvious feature leading to this would be a factorization

�(r) =
k∏

p=1

�
(ev)
1 (rp1)�

(ev)
2 (rp2) (96)

of the characteristic function. We find immediately

R̂k(x1, . . . , xk) = det[Ĉ(xp, xq)]p,q=1,...,k (97)

with the kernel

Ĉ(xp, xq) = i

π

N−1∑
n=0

1

n!

∂n exp(−xqr2)�
(ev)
2 (r2)

∂rn
2

∣∣∣∣
r2=0

×
∫ +∞

−∞
dr1�(Lpr1) exp(−ixpr1 − Lpεr1)(−ir1)

n�
(ev)
1 (r1), (98)

where we suppress the indices p and q in the r variables. It is nicely consistent with
the discussion in section 5.2 that the functions �

(ev)
1 (rp1) and �

(ev)
2 (rp2) are, according to

equation (45), the Fourier transforms of the functions P
(red)
1 (Hpp) and P

(red)
2 (H(k+p)(k+p))

in equation (79). Thus, the factorizations (79) and (96) are equivalent. We note that the
GUE case is trivially recovered. We then have �

(ev)
j (rpj ) = exp

(−r2
pj

/
4
)

which combines
in the derivative expression with the exponential to the generating function of the Hermite
polynomials, and the integral yields the generalized Hermite functions as given in appendix E.
It is conceivable that mechanisms other than following from the factorizations (79) or (96) can
be identified that also lead to a determinant structure. However, as the merit of equation (95) is
its completely general character and its independence of such factorizations and determinant
structures, we have not explored this in Fourier superspace either.

One can wonder whether it is helpful to integrate over the group SU(N), i.e. over the
ordinary unitary matrix U diagonalizing H, before inserting the characteristic function �(r)

in formula (95). With the help of equation (67) we find

�(r) = πN(N−1)/2

N !
∏N−1

n=1 n!

∫
d[E]�2

N(E)P (E)

∫
dµ(U) exp(i tr UEU †R)

= πN(N−1)/2

i(N−k)(2k−1)N !
∏N−2k

n=1 n!�2k(r1, r2)
∏2k

p=1(rp1rq2)N−2k

∫
d[E]�N(E)P (E)

× det
[
exp(iEnr11) · · · exp(iEnrk2)1En · · · EN−2k−1

n

]
n=1,...,N

, (99)

where we have to set Rp = rp1, Rp+k = rp2, p = 1, . . . , k. The eigenvalues rp2 do not come
with imaginary units in the formula above. This is also important in �2k(r1, r2) which is the
ordinary Vandermonde determinant of the 2k variables r1 and r2. As the whole integrand is
invariant under permutations of the eigenvalues En, we may replace the determinant stemming
from the group integration by the product of its diagonal elements, because all other terms
yield the same result. However, from the resulting expression

�(r) = πN(N−1)/2

i(N−k)(2k−1)
∏N−2k

n=1 n!�2k(r1, r2)
∏2k

p=1(rp1rp2)N−2k

∫
d[E]�N(E)P (E)

×
k∏

p=1

exp(i(Eprp1 + Ek+prp2))

N∏
n=2k+1

En−2k−1
n , (100)
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it is not immediately obvious anymore that its limit of vanishing rpj remains finite, given by
the normalization �(0) = 1.

We give the expressions (99) and (100) mainly for the sake of completeness, because they
are not particularly useful in their general form. Although the powers in the denominator are
not real singularities in equations (99) and (100), they become truly singular, if one tries to
exchange the order of integrations and to do the r integrations first in equation (93).

5.5. Ensembles involving higher order traces as an example

As it might be helpful to illustrate our findings by an example, we consider the probability
density

P(H) = bM1M2(tr HM1)M2 exp(−tr H 2) (101)

for a fixed pair of integers M1,M2 = 0, 1, 2, . . .. The constant bM1M2 ensures normalization.
The Gaussian case is recovered for M1 = 0 or M2 = 0. A few obviously meaningless cases
have to be excluded, such as the choice M1 = M2 = 1, which makes the normalization integral
vanish. While the probability density (101) is still in the norm-dependent class discussed in
[10] for M1 = 2, it is not for other values of M1. Importantly, the probability density (101)
does not factorize according to equation (79) or (80). In particular, this means that this
random matrix ensemble is not covered by the Mehta–Mahoux theorem, although we do not
exclude that is possible with some efforts to extend the latter properly. Formula (78) provides
a direct way to calculate the correlation functions for such ensembles. However, as we aim
at addressing the conceptual issues in the present contribution, we refrain from presenting the
quite cumbersome expressions too explicitly. We rather sketch the calculation briefly and infer
what kind of structure the correlation functions will acquire. The reduced probability density
must have the form

P (red)(h) = exp(−trg h2)
∑
{m}

a{m}S{m}(h), (102)

where a{m} are constants and where

S{m}(h) =
∑

ω

s{m}ω
2k∏

p=1

H
mω(p)

pp (103)

are certain symmetric functions, i.e. linear combinations of products involving a set {m}
of integer exponents mp, symmetrized by summing over all permutations ω of the indices
p = 1, . . . , 2k. The exponents mp are between zero and M1 + M2 with the restriction that
their sum does not exceed M1 + M2. In the commonly appearing symmetric functions, the
numbers s{m}ω are unity. Here, they stand for signs and imaginary units whose origin becomes
clear when realizing that the functions S{m}(h) must be expressible as linear combinations of
the invariants (trg hl)l

′
. Thus, the correlation functions are given by

R̂k(x1, . . . , xk) =
∑
{m}

a{m}
∫

d[h] exp(−trg h2)S{m}(h)R̂
(fund)
k (x − h). (104)

Upon inserting equation (103) and using the determinant structure of the fundamental
correlations, we obtain

R̂k(x1, . . . , xk) =
∑
{m}

a{m}
∑

ω

s{m}ω det
[
Ĉmω(p)mω(k+q)

(xp, xq)
]
p,q=1,...,k

(105)

where the kernel

Ĉm1m2(xp, xq) = 1

π
exp

(−x2
p

) N−1∑
n=0

1

n!
η̂nm1(xp)ϑnm2(xq) (106)
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has a structure formally similar to that of the GUE kernel. The functions

η̂nm1(xp) =
∫ +∞

−∞
dHpp exp

(−H 2
pp

)
Hm1

pp

∫ ∞

0
dr1(ir1)

n exp
(∓ ir1

(
x∓

p − Hpp

))
,

ϑnm2(xq) =
∫ +∞

−∞
dH(k+q)(k+q) exp

(−H 2
(k+q)(k+q)

)
H

m2
(k+q)(k+q)(xq − iH(k+q)(k+q))

n

(107)

can be written as finite weighted sums of the generalized Hermite functions which are discussed
in appendix E and of the ordinary Hermite polynomials, respectively. According to the result
(105), the correlation functions are linear combinations of determinants.

Alternatively, this calculation can be carried out using the results of section 5.4. It follows
from the inverse of formula (46) that the characteristic function has a form very similar to the
reduced probability density,

�(r) = exp

(
−1

4
trg r2

)∑
{m}

ã{m}S{m}(r), (108)

with new constants ã{m}. With the help of equation (93) or (95) this leads in a straightforward
manner to the above-mentioned linear combinations of determinants.

6. Summary and conclusions

We derived supersymmetric formulations for arbitrary unitarily invariant random matrix
ensembles. The construction is based on an algebraic duality between ordinary and superspace
which made it possible to generalize the Hubbard–Stratonovich transformation. We identified
a reduced probability density and a projector which yield the probability density in superspace
from the one in ordinary space. However, we showed that despite the conceptual insights
thereby obtained, the theory can be formulated without using the probability density in
superspace. It turned out that it is possible and often even better to work in Fourier space.
Remarkably, the characteristic functions of the probability density have the same functional
form in ordinary and superspace, if they only depend on traces involving integer powers of
the matrices. At present, it appears to us that it is a priori easier to analyse some convergence
issues in Fourier superspace, but to make more definite statements will require additional
work. It is not inconceivable that manifestly invariant theories can be constructed in Fourier
superspace.

This leads us to the symmetry issue. There seems to be no way around hyperbolic
symmetry if one wishes to set up nonlinear σ models. Here, however, we were interested in
exact, non-asymptotic results. Although this requires the calculation of certain group integrals,
it simplifies the symmetry: we showed that compact supergroups are sufficient to construct
supersymmetric integral representations of the correlation functions for arbitrary positions
of the imaginary increments. This is a more formal justification of a procedure which we
have been using in previous work. We conclude that hyperbolic symmetry is a necessity for
nonlinear σ models, but not for supersymmetric theories in general. Nevertheless, even though
mathematics can be nicer than one expects, it is an interesting challenge to also derive those
supersymmetric integral representations from a version of the theory in terms of non-compact
groups.

We gave two general results for the correlation functions. The first one involves certain
correlations to which we refer as fundamental, while the second one is only in terms of
eigenvalue integrals. Both results are valid for arbitrary unitarily invariant random matrix
ensembles. No factorization property of the probability density has to be assumed.
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Worthwhile extensions of the study presented here are the exact calculation of correlation
functions for various unitarily invariant ensembles and the investigation of scaling limits and
large-N behaviour—a task for which our results are particularly well suited.
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Appendix A. Equality of the traces

The assertion (22) is obviously correct for m = 1, because we have

tr K =
k∑

p=1

tr
(
Lpzpz†p − ζpζ †

p

) =
k∑

p=1

(
Lpz†pzp + ζ †

pζp

)
= trg B. (A.1)

For m = 2, 3, . . ., we find

tr Km = tr ALA† · · ·ALA†

= tr AL1/2L1/2A†AL1/2 · · · L1/2A†AL1/2L1/2A†

= tr AL1/2Bm−1L1/2A†. (A.2)

Without anticommuting variables, we could now simply use the invariance of the trace under
cyclic permutation and would arrive at the desired result (22), but with an ordinary trace
also on the right-hand side. To carefully account for the anticommuting variables, we write
C = Bm−1 and introduce the upper indices (c1) and (c2) in boson–fermion block notation for
the commuting variables as well as (a12) and (a21) for the anticommuting ones. We obtain

tr Km =
∑
p,q

tr
(
zpL1/2

p C(c1)
pq L1/2

q z†q − zpL1/2
p C(a12)

pq ζ †
q + ζpC(a21)

pq L1/2
q z†q − ζpC(c2)

pq ζ †
q

)
=
∑
p,q

(
L1/2

q z†qzpL1/2
p C(c1)

pq + ζ †
q zpL1/2

p C(a12)
pq + L1/2

q z†qζpC(a21)
pq + ζ †

q ζpC(c2)
pq

)
=
∑
p,q

(
B(c1)

pq C(c1)
pq + B(a12)

pq C(a21)
pq − (

B(a21)
pq C(a12)

pq + B(c2)
pq C(c2)

pq

))
= trg BC = trg BBm−1 = trg Bm, (A.3)

as claimed.

Appendix B. Details of the spectral decomposition

The matrix K is ordinary Hermitian, although anticommuting variables are present. In
particular, all inverses of the matrix elements Kn′n exist. The eigenvalues Ỹn are thus uniquely
defined. Moreover, the diagonalizing matrix Ṽ = [Ṽ1 · · · ṼN ] introduced in equation (15)
is ordinary unitary and in SU(N), and the corresponding eigenvectors Ṽn are orthonormal
and have commuting elements only. This might seem to be at odds with the form (25)
of the eigenvectors Vn. In the second representation of the supervectors wn, the wnp1 are
anticommuting and the wnp2 are commuting, such that all elements of the vector Vn are
anticommuting, despite the fact that K is an ordinary matrix. To clarify this, we note that the
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eigenvectors Vn can be written in the form Vn = γnV̂n where the coefficients γn are commuting
in the first and anticommuting in the second representation of the vectors wn. The Vn are
orthogonal, but they cannot be normalized in the standard way, if the γn are anticommuting.
We emphasize that this causes no problem whatsoever. All entries of the vectors V̂n are
commuting, although they contain anticommuting variables. The eigenvalue equation (23)
thus reads KγnV̂n = YnγnV̂n. Since the possibly anticommuting structure due to γn does
not interfere with the matrix structure of K, the vectors V̂n must be eigenvectors. As the
eigenvectors Ṽn for the non-zero eigenvalues of K are unique, we may identify them in these
cases with the vectors V̂n. The eigenvectors for the zero eigenvalues are not important in our
context and do not need to be specified. Hence, we have

Vn = γnṼn, (B.1)

such that the eigenvectors Vn and Ṽn are proportional to each other. The coefficients can be
written as the scalar products

γn = Ṽ †
n Vn = Ṽ †

n AL1/2wn. (B.2)

If γn is anticommuting, it is has to be nilpotent, which means that an integer j exists such that
γ

j
n = 0. We note that γn is not nilquadratic, i.e. the number j is here larger than two, because

γn is a complicated linear combination of nilquadratic anticommuting variables. In general, a
linear combination of J nilquadratic anticommuting variables is nilpotent for every j > J + 1.
Moreover, we also deduce from equation (B.1) that

V
†
n′Vn = γ ∗

n γnδn′n (B.3)

is the orthogonality relation.
It is worthwhile to also collect more information about the supermatrix B. According to

the definition (20), it is non-Hermitian and satisfies

B† = LBL. (B.4)

One easily sees that

w
†
p′Lwp = δp′p (B.5)

is the corresponding orthonormality relation for the eigenvectors wp. Being supervectors,
these eigenvectors can always be properly normalized to unity. One has

2k∑
p=1

wpw†
pL = 12k (B.6)

as the completeness relation.
We construct a helpful alternative representation of the matrix K. Employing the form

(25) and the completeness relation (B.6) we work out the expression

2k∑
n=1

VnV
†
n =

2k∑
n=1

AL1/2wnw
†
n(L

1/2)†A†

=
2k∑

n=1

AL1/2wnw
†
nLL1/2A† = ALA†, (B.7)

and by virtue of equation (19) we arrive at

K =
2k∑

n=1

VnV
†
n . (B.8)
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This spectral decomposition is somewhat strange, because the eigenvalues do not appear
explicitly. However, useful results can be deduced from it. In the eigenvalue equation
KVn = YnVn it gives together with the orthogonality relation (B.3)

Yn = V †
n Vn = γ ∗

n γn. (B.9)

Thus, the k eigenvalues Yp+k = yp2 are products of two nilpotent anticommuting variables.
From the decomposition (B.8), we may also conclude

KṼn =
2k∑

n′=1

Vn′V
†
n′ Ṽn = VnV

†
n Ṽn = γnṼnγ

∗
n = γnγ

∗
n Ṽn, (B.10)

where we used equations (B.1) and (B.2). In the case of the second representation, in which
γn is anticommuting, comparison with the definition (15) yields

ỸnṼn = KṼn = −γ ∗
n γnṼn, (B.11)

implying together with equation (B.9) the sign switch Ỹn = −Yn for all eigenvalues
corresponding to the second representation. This reasoning is consistent with an alternative
derivation based on matrix invariants which is given by Wei [16].

Furthermore, one readily sees from the decomposition (B.8) that all eigenvalues
Yn, n > 2k which are different from Yp = yp1 and Yp+k = yp2 must be zero. As K is
Hermitian, one can convince oneself in the usual way that the eigenvectors Vn to different
eigenvalues are orthogonal. Let Vn be an eigenvector to an eigenvalue Yn with n > 2k. We
immediately conclude from equation (B.8) that KVn = 0 and hence Yn = 0.

We show in an alternative way that the 2k non-zero eigenvalues Yn of K coincide with
the eigenvalues of B. We write the eigenvalue equation as Bwn = bnwn and consider the
orthogonality relation

δn′nYn = V
†
n′Vn

= w
†
n′(L

1/2)†A†AL1/2wn = w
†
n′(L

1/2)†L−1/2L1/2A†AL1/2wn

= w
†
n′LBwn = bnw

†
n′Lwn = bnδn′n. (B.12)

For n = n′ we conclude bn = Yn as claimed, and for n �= n′ we observe that the orthogonalities
of the eigenvectors Vn and wn mutually imply each other.

Finally, we mention that the relation tr Km = tr Ỹ m requires a careful interpretation for
non-integer m. This is so, because the expression (γ ∗

n γn)
m is ill defined for non-integer m if

γn is anticommuting. However, one can avoid the diagonalization altogether and decompose
K = K(c) + K(a) where K(c) and K(a) contain the dyadic matrices with commuting and
anticommuting variables, respectively. Thereby the issue is mapped onto the question whether
the infinite power series tr Km = tr(K(c) + K(a))m is well defined for non-integer m. This
seems doubtful, because the N × N matrix K(c) has rank k with k < N .

Appendix C. A supersymmetric Ingham–Siegel integral

For 2k × 2k Hermitian supermatrices σ and ρ, we wish to calculate the integral I (ρ),
i.e. the Fourier transform (58) of the superdeterminant. As I (ρ) is obviously an invariant
function depending on eigenvalues only, we may replace ρ with r. Up to a certain point,
we can apply and slightly extend the methods given in [17] for the case of ordinary matrices.
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Employing the notation of appendix A, the matrix σ is viewed as consisting of the element
σ

(c1)
11 , the supervector 
σ1 = (

σ
(c1)
21 , . . . , σ

(c1)
k1 , σ

(a21)
11 , . . . , σ

(a21)
k1

)
with k − 1 commuting and k

anticommuting variables, the complex conjugate 
σ †
1 and the (2k − 1) × (2k − 1) Hermitian

supermatrices σ̃ containing all other matrix elements. Because of

detgσ− = detgσ̃−(σ (c1)−
11 + 
σ †

1 (σ̃−)−1 
σ1
)

(C.1)

the integral over σ
(c1)
11 can easily be performed with the help of the residue theorem. Some care

is needed, because the bilinear form 
σ †
1 (σ̃−)−1 
σ1 is an undetermined complex number due to

the presence of the imaginary increments. However, as the variables σ̃ are only parameters
in the σ

(c1)
11 integration, we may shift the imaginary increments away, assuming that σ̃ can be

inverted. The unitary supermatrix diagonalizing σ̃ can then be absorbed into the supervector

σ1. This makes the bilinear form 
σ †

1 (σ̃ )−1 
σ1 real, and the residue is well determined. The
integral over the supervector 
σ1 is then simply Gaussian and we find

I (ρ) ∼ �(r11)(ir11)
N exp (−εr11)

∫
d[σ̃ ] exp (i trg r̃ σ̃ ) detg−(N−1)σ̃− (C.2)

with r̃ = diag(r21, . . . , rk1, irk2, . . . , irk2). We perform the calculation up to the normalization
constant which will be determined later on. It should be noted that the presence of the
anticommuting variables leads to some differences as compared to the corresponding formula
in [17]. We can repeat this step k−1 further times until all variables σ (c1)

pq and all anticommuting
variables σ (a21)

pq and σ (a12)
pq have been integrated out. This results in

I (ρ) ∼
k∏

p=1

�(rp1)(irp1)
N exp(−εrp1)J (r2)

J (r2) =
∫

d[σ (c2)] exp(i tr r2σ
(c2))detN−kσ (c2).

(C.3)

The remaining integral J (r2) is over the ordinary k × k Hermitian matrix σ (c2). As no
anticommuting variables appear in the integrand, the inverse superdeterminant is identical to
the determinant in the numerator. This determinant does not contain singularities anymore and
thus we dropped the imaginary increments. Upon introducing eigenvalue-angle coordinates
for σ (c2) and applying the Harish-Chandra–Itzykson–Zuber integral (66) for U(k), we are left
with an integral over the eigenvalues s(c2)

p , p = 1, . . . , k given by

J (r2) ∼ 1

�k(r2)

∫
d[s(c2)]�k(s

(c2)) exp(i tr r2s
(c2)) detN−ks(c2). (C.4)

As the Vandermonde determinant appearing in the remaining integral reads

�k(s
(c2)) =

∏
p<q

(
s(c2)
p − s(c2)

q

) = det
[(

s(c2)
p

)q−1]
p,q=1,...,k

, (C.5)

we can do the eigenvalue integrals and have

J (r2) ∼ 1

�k(r2)
det

[
∂N−k+q−1δ(rp2)

∂r
N−k+q−1
p2

]
p,q=1,...,k

. (C.6)

The Vandermonde determinant �k(r2) cancels out. To see this one may use the identity

∂N−k+q−1δ(rp2)

∂r
N−k+q−1
p2

= (−1)N−1 (N − k + q − 1)!

(N − 1)!
r

k−q

p2

∂N−1δ(rp2)

∂rN−1
p2

, (C.7)
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which is easily derived by multiplying the right-hand side with a well-behaved, non-singular
function and integrating by parts. Thus, we have

det

[
∂N−k+q−1δ(rp2)

∂r
N−k+q−1
p2

]
p,q=1,...,k

∼ det

[
r

k−q

p2

∂N−1δ(rp2)

∂rN−1
p2

]
p,q=1,...,k

= det
[
r

k−q

p2

]
p,q=1,...,k

k∏
p=1

∂N−1δ(rp2)

∂rN−1
p2

= �k(r2)

k∏
p=1

∂N−1δ(rp2)

∂rN−1
p2

. (C.8)

Collecting everything we arrive at the first of the results (59). The normalization constant cNk

is found by integrating I (ρ) together with a normalized Gaussian

CNk

(
(−1)N−1(N − 1)!

i2π

)k

= I (0) = 2k(k−1)

∫
d[ρ] exp(−trg ρ2)I (ρ)

=
∫

d[σ ] exp

(
−1

4
trg σ 2

)
detg−Nσ− = 2−k(k−1). (C.9)

When calculating I (0), we used �(0) = 1/2, as follows from a careful inspection of the
step leading from equation (C.1) to equation (C.2). The second and the last equality sign
in equation (C.9) are due to the Efetov–Wegner–Parisi–Sourlas theorem [1, 22–25], and the
equality of the two integrals is a direct consequence of the definition (58).

Appendix D. Properties of the fundamental correlations and the fundamental kernel

The fundamental correlations (73) are closely related, but not identical to the superdeterminant,
i.e. to the Fourier backtransform of the function I (ρ), defined in equation (58). This is so,
because the Efetov–Wegner–Parisi–Sourlas contributions [1, 22–25] for the function I (ρ)

and for the whole generating function Zk(x + J ) are different. To gain further insights, we
rewrite the fundamental kernel (75). We introduce two 2 × 2 Hermitian supermatrices σ and
ρ with eigenvalues s = diag(sp1, isq2) and r = diag(r1, ir2), respectively. We then can cast
equation (75) into the form

Ĉ(fund)(sp1, isq2) = − 1

π(s−
p1 − isq2)

(∫
d[ρ] exp(−i trg ρσ)I (ρ) − 1

)
, (D.1)

which is easily verified with the help of formula (70). Importantly, we have to subtract the
Efetov–Wegner–Parisi–Sourlas contribution, i.e. unity in the present case, from the integral.
The integral over ρ is now precisely the Fourier backtransform of equation (58) and we have

Ĉ(fund)(sp1, isq2) = − 1

π(s−
p1 − isq2)

(detg−Nσ− − 1)

= − 1

π(s−
p1 − isq2)

( isq2

s−
p1

)N

− 1


= 1

π(s−
p1)

N

(s−
p1)

N − (isq2)
N

s−
p1 − isq2

, (D.2)

which is the result (77). We note that the fundamental kernel and the fundamental correlation
function coincide for k = 1. For k > 1, this is not so and the calculation just presented works
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for the fundamental kernel, but not for the whole fundamental correlation function, because
we do not know the corresponding Efetov–Wegner–Parisi–Sourlas contributions explicitly.

To calculate the double integral (75) directly, we apply techniques developed in [12, 26].
We integrate the r2 integral N − 1 times by parts and have

Ĉ(fund)(sp1, isq2) = − (−1)N−1

π(N − 1)!

×
∫ +∞

−∞
dr1�(r1)(ir1)

N exp(−ir1s
−
p1)

∂N−1

∂rN−1
2

exp(−ir2sq2)

r1 − ir2

∣∣∣∣∣
r2=0

. (D.3)

The (N − 1)-fold derivative is computed with Leibnitz’ rule according to

∂N−1

∂rN−1
2

exp(−ir2sq2)

r1 − ir2

∣∣∣∣
r2=0

= (−1)N(N − 1)!
N−1∑
n=0

(isq2)
n

n!(ir1)N−n
, (D.4)

which yields equation (76).

Appendix E. Rederivation of the GUE correlation functions

Again, we resort to techniques developed in [12, 26]. For a Gaussian probability density
P(H) ∼ exp(−tr H 2), we obviously have

P
(red)
1 (Hpp) = 1√

π
exp

(−H 2
pp

)
P

(red)
2 (H(k+p)(k+p)) = 1√

π
exp

(−H 2
(k+p)(k+p)

) (E.1)

in equation (79). We plug this into equation (78) and use the first of equations (76). The
H(k+q)(k+q), q = 1, . . . , k integrals are then recognized as representations of the Hermite
polynomials

Hn(x) = 2n

√
π

∫ +∞

−∞
exp(−ξ 2)(z − iξ)n dξ, (E.2)

while the Hpp, p = 1, . . . , k integrals yield the generalized Hermite functions

Ĥn(x) = (i2)n+1

√
π

exp(x2)

∫ ∞

0
exp(−ξ 2 − i2xξ)ξn dξ. (E.3)

These functions have already been introduced into the RMT context in [26]. They comprise
both fundamental solutions of the Hermite differential equation, the polynomials Hn(x) and
the non-polynomial solutions H̃n(x), in the form

Ĥn(x) = H̃n(x) + iHn(x), (E.4)

details can be found in [26]. We also use the generalized oscillator wavefunctions

ϕ̂n(x) = 1√
2nn!

√
π

exp

(
−x2

2

)
Ĥn(x) = ϕ̃n(x) + iϕn(x). (E.5)

Collecting everything, we find∫ +∞

−∞
dHpp

1√
π

exp
(−H 2

pp

) ∫ +∞

−∞
dH(k+q)(k+q)

1√
π

exp
(−H 2

(k+q)(k+q)

)
× Ĉ(fund)(xp − Hpp, xq − iH(k+q)(k+q)) = exp

(
x2

q − x2
p

2

)
K̂(GUE)(xp, xq),

(E.6)
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where

K̂(GUE)(xp, xq) =
N−1∑
n=0

ϕ̂n(xp)ϕn(xq) (E.7)

is the GUE kernel, including the real part correlations. Hence, we arrive at

R̂k(x1, . . . , xk) = det

[
exp

(
x2

q − x2
p

2

)
K̂(GUE)(xp, xq)

]
p,q=1,...,k

= det[K̂(GUE)(xp, xq)]p,q=1,...,k

= R̂
(GUE)
k (x1, . . . , xk), (E.8)

which is the correct result.

Appendix F. On the proper definition of the reduced probability density

The following example illustrates, despite its simplicity, why the definition of the reduced
probability density P (red)(h) should involve the characteristic function. We consider the
probability density

P(H) = 2N(N−1)/2

πN2/2
exp(−tr(H + α1N)2)

= 2N(N−1)/2

πN2/2
exp(−tr H 2 − 2α tr H − Nα2), (F.1)

where α is a constant. The probability density P(H) depends on two invariants, tr H and
tr H 2. The correlation functions are obviously those of the GUE, measured on the energy
scale shifted by α,

R̂k(x1, . . . , xk) = R̂
(GUE)
k (x1 + α, . . . , xk + α). (F.2)

Formally, this follows directly from the definition (2) if one shifts the integration variables H
by α1N . The characteristic function reads

�(K) = exp
(− 1

4 tr K2 − iα tr K
)

= exp
(− 1

4 trg B2 − iα trg B
) = �(B) (F.3)

which yields with the replacement (35)

�(r) = exp
(− 1

4 trg r2 − iα trg r
) = exp

(− 1
4 trg(r + i2α12k)

2
)

(F.4)

as function of the eigenvalues r. Since the characteristic function has the factorization property
(96) with

�
(ev)
1 (rp1) = exp

(
− r2

p1

4
− iαrp1

)
�

(ev)
2 (rp2) = exp

(
− r2

p2

4
− αrp2

)
, (F.5)

we can employ formulae (97) and (98) which directly give the correct result (F.2). Here, it is
crucial that �

(ev)
1 (rp1) and �

(ev)
2 (rp2) are not the same functions, even though the difference is

only due to an imaginary unit.
We now turn to the reduced probability density. From the definition (46) we find

P (red)(h) = 1

πk
exp

(−trg h2 − 2α trg h
)

= 1

πk
exp(−trg(h + α12k)

2) (F.6)
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implying the factorization (79) with

P
(red)
1 (Hpp) = 1√

π
exp(−(Hpp + α)2)

P
(red)
2 (H(k+p)(k+p)) = 1√

π
exp(+(iH(k+p)(k+p) + α)2).

(F.7)

As this yields in formula (78) together with the results of appendix E once more the right
answer (F.2) we have the confirmation that the reduced probability density (F.6) is indeed the
correct one. On the other hand, the naive definition of the reduced probability density which
we discussed in section 3.6 would give∫

d[H/h]P(H) = 1

πk

k∏
p=1

exp(−(Hpp + α)2)

k∏
p=1

exp(−(H(k+p)(k+p) + α)2), (F.8)

which is easily seen to be wrong when inserted in formula (78). The correct reduced
probability density (F.6) does contain information about supersymmetry, because the functions
P

(red)
1 (Hpp) and P

(red)
2 (H(k+p)(k+p)) are different. In the expression (F.8), however, the variables

Hpp and H(k+p)(k+p) appear in exactly the same way, no traces of a supersymmetric structure
are present.
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